Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Aguatrichlorido(1-cyanomethyl-4-aza-1azoniabicvclo[2.2.2]octane- κN^4)copper(II) monohydrate

Qingin Zhou and Yi Zhang*

Ordered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: zhouqinqin623@sina.com

Received 15 March 2012; accepted 18 April 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.036; wR factor = 0.093; data-to-parameter ratio = 18.6.

The asymmetric unit of the title compound, [CuCl₃(C₈H₁₄N₃)-(H₂O)]·H₂O, comprises a neutral complex and a molecule of free water. The complex contains coordinated Cu^{II} ions, with Cu-Cl distances ranging from 2.3471 (8) to 2.4011 (8) Å, and with Cu-N and Cu-O distances of 2.0775 (19) and 2.0048 (18) Å, respectively. The resulting coordination polyhedron is a trigonal bipyramid with the Cl atoms in the equatorial plane. In the crystal, O-H···Cl and O-H···O hydrogen bonds link the molecules into a three-dimensional structure.

Related literature

For background to dielectric-ferroelectric materials, see: Fu et al. (2010); Zhang et al. (2008). The title compound was prepared in an attempt to make analogs of $(dabcoH_2)_2Cl_3$ - $[CuCl_3(H_2O)_2]$ ·H₂O (Wei & Willett, 1996) and (dabcoH₂)-CuCl₄ and Zn(dabcoH)Cl₃ (Wei & Willett, 2001) (dabco is 1,4diazabicyclo[2.2.2]octan).

Crystal data

[CuCl₃(C₈H₁₄N₃)(H₂O)]·H₂O $M_r = 358.14$ Monoclinic, C2/c a = 24.301 (5) Å b = 8.2794 (17) Å c = 14.069 (3) Å $\beta = 101.69 (3)^{\circ}$

Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\min} = 0.963, T_{\max} = 0.971$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	H atoms treated by a mixture o
$wR(F^2) = 0.093$	independent and constrained
S = 1.10	refinement
3155 reflections	$\Delta \rho_{\rm max} = 0.62 \text{ e} \text{ Å}^{-3}$
170 parameters	$\Delta \rho_{\rm min} = -0.86 \text{ e } \text{\AA}^{-3}$

 $V = 2771.9 (10) \text{ Å}^3$

Mo Ka radiation

 $0.36 \times 0.32 \times 0.28 \text{ mm}$

13618 measured reflections

3155 independent reflections

2881 reflections with $I > 2\sigma(I)$

of

 $\mu = 2.15 \text{ mm}^-$

T = 298 K

 $R_{\rm int} = 0.068$

Z = 8

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$\begin{array}{c} 02 - H13 \cdots Cl2^{i} \\ 02 - H12 \cdots O1 \\ 01 - H11 \cdots Cl3^{ii} \\ 01 - H10 \cdots Cl3^{i} \end{array}$	0.93 (4) 0.80 (4) 0.77 (5) 0.80 (5)	2.24 (4) 1.92 (4) 2.72 (5) 2.54 (6)	3.128 (2) 2.693 (3) 3.447 (3) 3.337 (3)	159 (3) 160 (4) 159 (4) 171 (5)

Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (ii) $x, -y, z + \frac{1}{2}$.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by Jiangsu Planned Projects for Postdoctoral Research Funds (1101010B).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2535).

References

Fu, D. W., Dai, J., Ge, J. Z., Ye, H. Y. & Qu, Z. R. (2010). Inorg. Chem. Commun. 13, 282-285.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wei, M. & Willett, R. D. (1996). Inorg. Chem. 35, 6381-6385.

Wei, M. & Willett, R. D. (2001). Acta Cryst. E57, m167-m168.

Zhang, W., Xiong, R. G. & Huang, S. P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.

supplementary materials

Acta Cryst. (2012). E68, m674 [doi:10.1107/S1600536812017205]

Aquatrichlorido(1-cyanomethyl-4-aza-1-azoniabicyclo[2.2.2]octane- κN^4)copper(II) monohydrate

Qinqin Zhou and Yi Zhang

Comment

The study of ferroelectric materials has received much attention and some materials have predominantly dielectricferroelectric performance (Fu *et al.*(2010); Zhang *et al.*(2008)). The title compound was prepared in an attempt to make analogs to (dabcoH₂)₂Cl₃[CuCl₃(H₂O)₂].H₂O (Wei & Willett, 1996) and to (dabcoH₂)CuCl₄ and Zn(dabcoH)Cl₃(Wei & Willett, 2001).

The asymmetric unit of the title compound, $(dabcoCH_2CN)[CuCl_3(H_2O)].H_2O(dabco is 1,4-bicyclo[2.2.2]octane)$, comprises a $(dabcoCH_2CN)[CuCl_3(H_2O)]$ moleculeand a molecule of free water. The Cu(dabcoCH_2CN)Cl_3(H_2O) molecule coordinated Cu^{II} ion has Cu—Cl distances ranging from 2.347 (8) to 2.401 (8) Å, a Cu—N distance of 2.078 (19) Å and a Cu—O distance of 2.005 (18) Å. There are hydrogen bonds found which are O(1)—H(10)…Cl(3), O(1)—H(11)…Cl(3), O(2)—H(13)…Cl(2), O(1)—H(12)…O(1). The hydrogen-bonded sheets link the molecules into a three-dimensional structure.

Experimental

 $(dabcoCH_2CN)Cl(10 \text{ mmol}, 1.68 \text{ g})$ were dissolved in 15 mL water, then $CuCl_2H_2O$ (10 mmol, 1.70 g) in 15 ml water was added into the previous solution and the mixed solution was filtered last. After a few days a great quantity of green microcrystasls were obtained by by slow evaporation at room temperature in air.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(*s*) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(*s*) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL/PC* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL/PC*.

Refinement

H atoms were placed in calculated positions(C—H = 0.97 Å for Csp^3 atoms), assigned fixed U_{iso} values [U_{iso} = 1.2 $Ueq(Csp^2/N)$ and 1.5 $Ueq(Csp^3)$] and allowed to ride.

Computing details

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear* (Rigaku, 2005); data reduction: *CrystalClear* (Rigaku, 2005); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

The molecular structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids.

Figure 2

A view of the packing of the title compound, stacking along the *a* axis. Dashed lines indicate hydrogen bonds.

Aquatrichlorido(1-cyanomethyl-4-aza-1-azoniabicyclo[2.2.2]octane- κN^4)copper(II) monohydrate

Crystal data	
$[CuCl_3(C_8H_{14}N_3)(H_2O)]\cdot H_2O$	F(000) = 1464
$M_r = 358.14$	$D_{\rm x} = 1.716 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $C2/c$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 12903 reflections
a = 24.301 (5) Å	$\theta = 3.1 - 27.5^{\circ}$
b = 8.2794 (17) Å	$\mu = 2.15 \text{ mm}^{-1}$
c = 14.069 (3) Å	T = 298 K
$\beta = 101.69 \ (3)^{\circ}$	Block, green
$V = 2771.9 (10) Å^3$	$0.36 \times 0.32 \times 0.28 \text{ mm}$
Z = 8	

Data collection

Rigaku SCXmini diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 13.6612 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2005) $T_{\min} = 0.963, T_{\max} = 0.971$	13618 measured reflections 3155 independent reflections 2881 reflections with $I > 2\sigma(I)$ $R_{int} = 0.068$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -31 \rightarrow 31$ $k = -10 \rightarrow 10$ $l = -18 \rightarrow 18$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.093$ S = 1.10 3155 reflections 170 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.037P)^2 + 2.7164P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.62$ e Å ⁻³ $\Delta\rho_{min} = -0.86$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.08955 (10)	0.0927 (3)	0.17062 (17)	0.0250 (5)	
H1A	0.0550	0.0937	0.1951	0.030*	
H1B	0.1083	-0.0094	0.1887	0.030*	
C2	0.07568 (10)	0.1079 (3)	0.05965 (17)	0.0246 (5)	
H2A	0.0922	0.0182	0.0309	0.030*	
H2B	0.0353	0.1042	0.0366	0.030*	
C3	0.09449 (10)	0.3817 (3)	0.19080 (16)	0.0215 (5)	
H3A	0.1182	0.4723	0.2164	0.026*	
H3B	0.0621	0.3820	0.2212	0.026*	
C4	0.07485 (10)	0.4018 (3)	0.08053 (16)	0.0232 (5)	
H4A	0.0341	0.4002	0.0636	0.028*	
H4B	0.0877	0.5047	0.0603	0.028*	
C5	0.17741 (9)	0.2318 (3)	0.17037 (17)	0.0215 (5)	
H5A	0.1965	0.1285	0.1806	0.026*	
H5B	0.2031	0.3142	0.2019	0.026*	
C6	0.16180 (10)	0.2671 (3)	0.06133 (18)	0.0261 (5)	

H6A	0.1764	0.3718	0.0479	0.031*
H6B	0.1782	0.1859	0.0258	0.031*
C7	0.08423 (11)	0.2867 (3)	-0.07951 (18)	0.0300 (6)
H7A	0.0986	0.3898	-0.0964	0.036*
H7B	0.1023	0.2023	-0.1099	0.036*
C8	0.02328 (12)	0.2805 (3)	-0.11707 (18)	0.0314 (6)
C12	0.20113 (3)	0.44899 (7)	0.38684 (4)	0.02851 (16)
C13	0.19677 (3)	-0.05276 (7)	0.34199 (4)	0.02920 (16)
Cl4	0.06069 (3)	0.23400 (10)	0.39370 (5)	0.03668 (18)
Cu1	0.151563 (11)	0.19653 (3)	0.364527 (19)	0.01994 (11)
H10	0.217 (2)	0.384 (6)	0.666 (3)	0.091 (19)*
H11	0.187 (2)	0.295 (5)	0.709 (3)	0.074 (17)*
H12	0.1751 (17)	0.215 (5)	0.543 (3)	0.063 (13)*
H13	0.2148 (17)	0.111 (4)	0.521 (3)	0.055 (10)*
N1	0.12648 (8)	0.2280 (2)	0.21552 (13)	0.0166 (4)
N2	0.09851 (8)	0.2654 (2)	0.02936 (14)	0.0197 (4)
N3	-0.02358 (12)	0.2753 (4)	-0.14739 (19)	0.0471 (7)
01	0.18732 (11)	0.3383 (3)	0.66114 (18)	0.0418 (5)
02	0.17734 (8)	0.1430 (2)	0.50550 (13)	0.0276 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0211 (12)	0.0239 (12)	0.0279 (12)	-0.0077 (10)	0.0001 (9)	0.0016 (9)
C2	0.0241 (12)	0.0221 (12)	0.0263 (12)	-0.0055 (10)	0.0018 (9)	-0.0047 (9)
C3	0.0207 (11)	0.0226 (12)	0.0208 (11)	0.0067 (9)	0.0030 (9)	0.0008 (8)
C4	0.0241 (12)	0.0215 (12)	0.0228 (12)	0.0048 (9)	0.0019 (9)	-0.0007 (9)
C5	0.0121 (11)	0.0287 (12)	0.0238 (12)	0.0007 (9)	0.0036 (9)	0.0016 (9)
C6	0.0133 (12)	0.0402 (14)	0.0255 (13)	-0.0021 (10)	0.0057 (9)	0.0013 (10)
C7	0.0272 (14)	0.0432 (16)	0.0190 (12)	0.0016 (11)	0.0035 (10)	-0.0018 (10)
C8	0.0329 (16)	0.0393 (15)	0.0204 (12)	0.0038 (12)	0.0013 (11)	-0.0021 (10)
Cl2	0.0248 (3)	0.0267 (3)	0.0309 (3)	-0.0035 (2)	-0.0016 (2)	-0.0039 (2)
C13	0.0303 (3)	0.0266 (3)	0.0309 (3)	0.0101 (2)	0.0067 (2)	0.0034 (2)
Cl4	0.0170 (3)	0.0620 (5)	0.0328 (4)	0.0085 (3)	0.0093 (3)	0.0129 (3)
Cu1	0.01484 (17)	0.02434 (18)	0.01982 (17)	0.00123 (10)	0.00157 (11)	0.00118 (10)
N1	0.0110 (9)	0.0189 (9)	0.0196 (9)	-0.0008 (7)	0.0023 (7)	0.0001 (7)
N2	0.0159 (10)	0.0259 (10)	0.0172 (9)	0.0007 (8)	0.0029 (7)	-0.0018 (7)
N3	0.0357 (16)	0.0609 (18)	0.0387 (15)	0.0060 (13)	-0.0065 (11)	-0.0060 (12)
01	0.0392 (14)	0.0456 (13)	0.0378 (13)	0.0086 (11)	0.0013 (10)	-0.0065 (10)
02	0.0252 (10)	0.0324 (10)	0.0229 (9)	0.0049 (8)	-0.0007 (7)	0.0000(7)

Geometric parameters (Å, °)

C1—N1	1.493 (3)	C6—N2	1.513 (3)	
C1—C2	1.534 (3)	C6—H6A	0.9700	
C1—H1A	0.9700	C6—H6B	0.9700	
C1—H1B	0.9700	C7—C8	1.469 (4)	
C2—N2	1.512 (3)	C7—N2	1.511 (3)	
C2—H2A	0.9700	C7—H7A	0.9700	
C2—H2B	0.9700	C7—H7B	0.9700	

C3—N1	1.495 (3)	C8—N3	1.133 (4)
C3—C4	1.537 (3)	Cl2—Cu1	2.4011 (8)
С3—НЗА	0.9700	Cl3—Cu1	2.3893 (7)
С3—Н3В	0.9700	Cl4—Cu1	2.3471 (8)
C4—N2	1.514 (3)	Cu1—O2	2.0048 (18)
C4—H4A	0.9700	Cu1—N1	2.0775 (19)
C4—H4B	0.9700	O1—H10	0.80 (5)
C5—N1	1.502 (3)	O1—H11	0.77 (5)
C5—C6	1.532 (3)	O2—H12	0.80 (4)
С5—Н5А	0.9700	O2—H13	0.93 (4)
С5—Н5В	0.9700		
N1—C1—C2	111.02 (18)	H6A—C6—H6B	108.3
N1—C1—H1A	109.4	C8—C7—N2	111.6 (2)
C2—C1—H1A	109.4	С8—С7—Н7А	109.3
N1—C1—H1B	109.4	N2—C7—H7A	109.3
C2-C1-H1B	109.4	C8—C7—H7B	109.3
H1A—C1—H1B	108.0	N2—C7—H7B	109.3
N2-C2-C1	109.86 (18)	H7A—C7—H7B	108.0
N2—C2—H2A	109.7	N3—C8—C7	179.0 (3)
C1-C2-H2A	109.7	Ω_{2} —Cu1—N1	174.24 (8)
N2-C2-H2B	109.7	Ω_{2} Cu_{1} Cl_{4}	88 43 (6)
C1 - C2 - H2B	109.7	N1— $Cu1$ — $Cl4$	93 78 (6)
$H_2A = C_2 = H_2B$	108.2	Ω^2 — $Cu1$ — $Cl3$	83 13 (6)
N1 - C3 - C4	111 57 (18)	N1 - Cu1 - Cl3	91 32 (5)
N1_C3_H3A	100.3	Cl4-Cu1-Cl3	127.71(3)
CA = C3 = H3A	109.3	$O_2 = C_{11} = C_{12}$	90.87 (6)
N1 C2 H3P	100.3	$N_1 = C_{11} = C_{12}$	93.43(6)
C_{4} C_{2} $H_{3}B$	109.3	$C_{14} = C_{11} = C_{12}$	93.43(0)
$H_{2} \wedge C_{2} H_{2} P$	109.5	$C_{14} = C_{11} = C_{12}$	109.08(3) 122.51(3)
N2 C4 C2	100.0	C1 = N1 = C2	122.31(3) 107.48(17)
$N_2 = C_4 = C_3$	109.19 (18)	C1 N1 C5	107.48(17) 108.24(18)
$N_2 - C_4 - H_4 A$	109.8	$C_1 = N_1 = C_2$	108.24(18)
C_{3} C_{4} H_{4} H_{4} C_{4} H_{4} H_{4} C_{4} H_{4} H_{4	109.0	$C_3 = N_1 = C_3$	108.34(18)
$N_2 - C_4 - H_4 B$	109.0	$C_1 = N_1 = C_{u_1}$	111.19(14) 111.05(12)
$C_3 - C_4 - H_4 B$	109.8	C5_NI_Cul	111.95(13)
$\mathbf{H}_{\mathbf{A}} - \mathbf{C}_{\mathbf{A}} - \mathbf{H}_{\mathbf{A}} \mathbf{D}$	100.5	C_{3} NI C_{2}	109.34(14)
NI = C5 = U5 A	111.09 (18)	$C/=N^2=C^2$	111.30 (18)
NI—C5—H5A	109.3	$C = N^2 = C^2$	108.14 (18)
C6—C5—H5A	109.3	$C_2 = N_2 = C_6$	109.45 (19)
NI—C5—H5B	109.3	C/=N2=C4	111.33 (18)
С6—С5—Н5В	109.3	C2—N2—C4	108.25 (18)
H5A—C5—H5B	107.9	C6—N2—C4	108.26 (18)
N2-C6-C5	109.06 (18)	H10—O1—H11	109 (5)
N2—C6—H6A	109.9	Cu1—O2—H12	116 (3)
С5—С6—Н6А	109.9	Cu1—O2—H13	113 (2)
N2—C6—H6B	109.9	H12—O2—H13	104 (4)
С5—С6—Н6В	109.9		

D—H···A	<i>D</i> —H	$H \cdots A$	$D \cdots A$	D—H···A
02—H13…Cl2 ⁱ	0.93 (4)	2.24 (4)	3.128 (2)	159 (3)
O2—H12…O1	0.80 (4)	1.92 (4)	2.693 (3)	160 (4)
O1—H11…Cl3 ⁱⁱ	0.77 (5)	2.72 (5)	3.447 (3)	159 (4)
O1—H10····Cl3 ⁱ	0.80 (5)	2.54 (6)	3.337 (3)	171 (5)

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -x+1/2, -y+1/2, -z+1; (ii) x, -y, z+1/2.